Combining EigenVoices and structural MLLR for speaker adaptation

نویسندگان

  • Fabrice Lauri
  • Irina Illina
  • Dominique Fohr
چکیده

This paper considers the problem of speaker adaptation of acoustic models in speech recognition. We have investigated four different possible methods which integrate the concepts of both Structural Maximum Likelihood Linear Regression (SMLLR) and EigenVoices technique to adapt the Gaussian means of the speaker independant models for a new speaker. The experiments were evaluated using the speech recognition engine ESPERE on the data of the corpus Resource Management. They show that all of the proposed methods can improve the performances of an ASRS in supervised batch adaptation as efficiently as SMLLR and EigenVoicesbased techniques whatever the amount of adaptation data is available. For an unsupervised incremental adaptation, only the approaches SMLLR!EV and SMLLR!SEV seemed to give the best results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Improving EigenVoices-based techniques and SMLLR for Speaker Adaptation by combining EV and SMLLR techniques or using Genetic Algorithms

This paper constitutes a study of several classical and original methods for a speaker adaptation of the acoustic hidden Markov models of an automatic speech recognition system (ASRS). Most of today’s real applications require that the speaker adaptation process continuously improves the performance of the underlying ASRS, as more utterances are pronounced by a new speaker. The first part of th...

متن کامل

Maximum likelihood eigenspace and MLLR for speech recognition in noisy environments

A technique for rapid speaker adaptation, called eigenvoices, was introduced recently. The key idea is to confine models in a very low-dimensional linear vector space. This space summarizes a priori knowledge that we have about speaker models. In many practical systems, however, there is a mismatch between the conditions in which the training data were collected and test conditions: prior knowl...

متن کامل

A comparative study of two kernel eigenspace-based speaker adaptation methods on large vocabulary continuous speech recognition

Eigenvoice (EV) speaker adaptation has been shown effective for fast speaker adaptation when the amount of adaptation data is scarce. In the past two years, we have been investigating the application of kernel methods to improve EV speaker adaptation by exploiting possible nonlinearity in the speaker space, and two methods were proposed: embedded kernel eigenvoice (eKEV) and kernel eigenspace-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003